Great Service! Fine-grained Parsing of Implicit Arguments

ACL (IWPT) 2021  ·  Ruixiang Cui, Daniel Hershcovich ·

Broad-coverage meaning representations in NLP mostly focus on explicitly expressed content. More importantly, the scarcity of datasets annotating diverse implicit roles limits empirical studies into their linguistic nuances. For example, in the web review "Great service!", the provider and consumer are implicit arguments of different types. We examine an annotated corpus of fine-grained implicit arguments (Cui and Hershcovich, 2020) by carefully re-annotating it, resolving several inconsistencies. Subsequently, we present the first transition-based neural parser that can handle implicit arguments dynamically, and experiment with two different transition systems on the improved dataset. We find that certain types of implicit arguments are more difficult to parse than others and that the simpler system is more accurate in recovering implicit arguments, despite having a lower overall parsing score, attesting current reasoning limitations of NLP models. This work will facilitate a better understanding of implicit and underspecified language, by incorporating it holistically into meaning representations.

PDF Abstract ACL (IWPT) 2021 PDF ACL (IWPT) 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here