Grid Impact Analysis and Mitigation of En-Route Charging Stations for Heavy-Duty Electric Vehicles

12 Aug 2022  ·  Xiangqi Zhu, Partha Mishra, Barry Mather, Mingzhi Zhang, Andrew Meintz ·

This paper presents a consolidated grid impact analysis design and corresponding mitigation strategies for heavy-duty electric vehicle (EV) charging stations. The charging load of heavy-duty charging station can reach several megawatts, which could induce adverse impacts on the distribution grid if not effectively mitigated. To analyze the impacts and provide corresponding solutions, we select four representative distribution systems - including both single-feeder cases and a multi-feeder case - and design thorough test metrics for the impact analysis. The charging load profiles used in the analysis are derived from realistic conventional heavy-duty vehicle travel data. Based on the analysis results, charging stations are placed at three different representative locations in each distribution system: best, good, and worst locations. Mitigation strategies using a combination of smart charger functionality, on-site photovoltaic (PV) generation, and on-site energy storage (ES) are proposed and tested. A sizing method is also proposed to find the optimal PV-ES-charger capacity that minimizes the capital cost.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods