Gromov-Hausdorff Approximation of Metric Spaces with Linear Structure

6 May 2013  ·  Frédéric Chazal, Jian Sun ·

In many real-world applications data come as discrete metric spaces sampled around 1-dimensional filamentary structures that can be seen as metric graphs. In this paper we address the metric reconstruction problem of such filamentary structures from data sampled around them. We prove that they can be approximated, with respect to the Gromov-Hausdorff distance by well-chosen Reeb graphs (and some of their variants) and we provide an efficient and easy to implement algorithm to compute such approximations in almost linear time. We illustrate the performances of our algorithm on a few synthetic and real data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here