Group Fairness with Uncertainty in Sensitive Attributes

Learning a fair predictive model is crucial to mitigate biased decisions against minority groups in high-stakes applications. A common approach to learn such a model involves solving an optimization problem that maximizes the predictive power of the model under an appropriate group fairness constraint. However, in practice, sensitive attributes are often missing or noisy resulting in uncertainty. We demonstrate that solely enforcing fairness constraints on uncertain sensitive attributes can fall significantly short in achieving the level of fairness of models trained without uncertainty. To overcome this limitation, we propose a bootstrap-based algorithm that achieves the target level of fairness despite the uncertainty in sensitive attributes. The algorithm is guided by a Gaussian analysis for the independence notion of fairness where we propose a robust quadratically constrained quadratic problem to ensure a strict fairness guarantee with uncertain sensitive attributes. Our algorithm is applicable to both discrete and continuous sensitive attributes and is effective in real-world classification and regression tasks for various group fairness notions, e.g., independence and separation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here