Group-Invariant Subspace Clustering

15 Oct 2015  ·  Shuchin Aeron, Eric Kernfeld ·

In this paper we consider the problem of group invariant subspace clustering where the data is assumed to come from a union of group-invariant subspaces of a vector space, i.e. subspaces which are invariant with respect to action of a given group. Algebraically, such group-invariant subspaces are also referred to as submodules. Similar to the well known Sparse Subspace Clustering approach where the data is assumed to come from a union of subspaces, we analyze an algorithm which, following a recent work [1], we refer to as Sparse Sub-module Clustering (SSmC). The method is based on finding group-sparse self-representation of data points. In this paper we primarily derive general conditions under which such a group-invariant subspace identification is possible. In particular we extend the geometric analysis in [2] and in the process we identify a related problem in geometric functional analysis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here