Group-Wise Point-Set Registration Based on Renyi's Second Order Entropy

In this paper, we describe a set of robust algorithms for group-wise registration using both rigid and non-rigid transformations of multiple unlabelled point-sets with no bias toward a given set. These methods mitigate the need to establish a correspondence among the point-sets by representing them as probability density functions where the registration is treated as a multiple distribution alignment. Holder's and Jensen's inequalities provide a notion of similarity/distance among point-sets and Renyi's second order entropy yields a closed-form solution to the cost function and update equations. We also show that the methods can be improved by normalizing the entropy with a scale factor. These provide simple, fast and accurate algorithms to compute the spatial transformation function needed to register multiple point-sets. The algorithms are compared against two well-known methods for group-wise point-set registration. The results show an improvement in both accuracy and computational complexity.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here