GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning

4 May 2021  ·  Xin Zhang, Jia Liu, Zhengyuan Zhu, Elizabeth S. Bentley ·

Decentralized nonconvex optimization has received increasing attention in recent years in machine learning due to its advantages in system robustness, data privacy, and implementation simplicity. However, three fundamental challenges in designing decentralized optimization algorithms are how to reduce their sample, communication, and memory complexities. In this paper, we propose a \underline{g}radient-\underline{t}racking-based \underline{sto}chastic \underline{r}ecursive \underline{m}omentum (GT-STORM) algorithm for efficiently solving nonconvex optimization problems. We show that to reach an $\epsilon^2$-stationary solution, the total number of sample evaluations of our algorithm is $\tilde{O}(m^{1/2}\epsilon^{-3})$ and the number of communication rounds is $\tilde{O}(m^{-1/2}\epsilon^{-3})$, which improve the $O(\epsilon^{-4})$ costs of sample evaluations and communications for the existing decentralized stochastic gradient algorithms. We conduct extensive experiments with a variety of learning models, including non-convex logistical regression and convolutional neural networks, to verify our theoretical findings. Collectively, our results contribute to the state of the art of theories and algorithms for decentralized network optimization.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here