Guaranteed Outlier Removal for Rotation Search

ICCV 2015  ·  Alvaro Parra Bustos, Tat-Jun Chin ·

Rotation search has become a core routine for solving many computer vision problems. The aim is to rotationally align two input point sets with correspondences. Recently, there is significant interest in developing globally optimal rotation search algorithms. A notable weakness of global algorithms, however, is their relatively high computational cost, especially on large problem sizes and data with a high proportion of outliers. In this paper, we propose a novel outlier removal technique for rotation search. Our method guarantees that any correspondence it discards as an outlier does not exist in the inlier set of the globally optimal rotation for the original data. Based on simple geometric operations, our algorithm is deterministic and fast. Used as a preprocessor to prune a large portion of the outliers from the input data, our method enables substantial speed-up of rotation search algorithms without compromising global optimality. We demonstrate the efficacy of our method in various synthetic and real data experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here