Guaranteed Stability Margins for Decentralized Linear Quadratic Regulators

15 Apr 2023  ·  Mruganka Kashyap, Laurent Lessard ·

It is well-known that linear quadratic regulators (LQR) enjoy guaranteed stability margins, whereas linear quadratic Gaussian regulators (LQG) do not. In this letter, we consider systems and compensators defined over directed acyclic graphs. In particular, there are multiple decision-makers, each with access to a different part of the global state. In this setting, the optimal LQR compensator is dynamic, similar to classical LQG. We show that when sub-controller input costs are decoupled (but there is possible coupling between sub-controller state costs), the decentralized LQR compensator enjoys similar guaranteed stability margins to classical LQR. However, these guarantees disappear when cost coupling is introduced.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here