Guided Sampling-based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis

12 Nov 2021  ·  Arun K. Sharma, Nishchal K. Verma ·

The diagnostic performance of most of the deep learning models is greatly affected by the selection of model architecture and hyperparameters. Manual selection of model architecture is not feasible as training and evaluating the different architectures of deep learning models is a time-consuming process. Therefore, we have proposed a novel framework of evolutionary deep neural network which uses policy gradient to guide the evolution of DNN architecture towards maximum diagnostic accuracy. We have formulated a policy gradient-based controller which generates an action to sample the new model architecture at every generation such that the optimality is obtained quickly. The fitness of the best model obtained is used as a reward to update the policy parameters. Also, the best model obtained is transferred to the next generation for quick model evaluation in the NSGA-II evolutionary framework. Thus, the algorithm gets the benefits of fast non-dominated sorting as well as quick model evaluation. The effectiveness of the proposed framework has been validated on three datasets: the Air Compressor dataset, Case Western Reserve University dataset, and Paderborn university dataset.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here