$H$-Consistency Guarantees for Regression

28 Mar 2024  ·  Anqi Mao, Mehryar Mohri, Yutao Zhong ·

We present a detailed study of $H$-consistency bounds for regression. We first present new theorems that generalize the tools previously given to establish $H$-consistency bounds. This generalization proves essential for analyzing $H$-consistency bounds specific to regression. Next, we prove a series of novel $H$-consistency bounds for surrogate loss functions of the squared loss, under the assumption of a symmetric distribution and a bounded hypothesis set. This includes positive results for the Huber loss, all $\ell_p$ losses, $p \geq 1$, the squared $\epsilon$-insensitive loss, as well as a negative result for the $\epsilon$-insensitive loss used in squared Support Vector Regression (SVR). We further leverage our analysis of $H$-consistency for regression and derive principled surrogate losses for adversarial regression (Section 5). This readily establishes novel algorithms for adversarial regression, for which we report favorable experimental results in Section 6.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods