Hand Orientation Estimation in Probability Density Form

12 Jun 2019  ·  Kazuaki Kondo, Daisuke Deguchi, Atsushi Shimada ·

Hand orientation is an essential feature required to understand hand behaviors and subsequently support human activities. In this paper, we present a new method for estimating hand orientation in probability density form. It can solve the cyclicity problem in direct angular representation and enables the integration of multiple predictions based on different features. We validated the performance of the proposed method and an integration example using our dataset, which captured cooperative group work.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here