Handwriting recognition using Cohort of LSTM and lexicon verification with extremely large lexicon

22 Dec 2016Bruno StunerClément ChatelainThierry Paquet

State-of-the-art methods for handwriting recognition are based on Long Short Term Memory (LSTM) recurrent neural networks (RNN), which now provides very impressive character recognition performance. The character recognition is generally coupled with a lexicon driven decoding process which integrates dictionaries... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet