Hardware Optimizations of Dense Binary Hyperdimensional Computing: Rematerialization of Hypervectors, Binarized Bundling, and Combinational Associative Memory

20 Jul 2018  ·  Manuel Schmuck, Luca Benini, Abbas Rahimi ·

Brain-inspired hyperdimensional (HD) computing models neural activity patterns of the very size of the brain's circuits with points of a hyperdimensional space, that is, with hypervectors. Hypervectors are $D$-dimensional (pseudo)random vectors with independent and identically distributed (i.i.d.) components constituting ultra-wide holographic words: $D = 10,000$ bits, for instance. At its very core, HD computing manipulates a set of seed hypervectors to build composite hypervectors representing objects of interest. It demands memory optimizations with simple operations for an e cient hardware realization. In this paper, we propose hardware techniques for optimizations of HD computing, in a synthesizable VHDL library, to enable co-located implementation of both learning and classification tasks on only a small portion of Xilinx(R) UltraScale(TM) FPGAs: (1) We propose simple logical operations to rematerialize the hypervectors on the fly rather than loading them from memory. These operations massively reduce the memory footprint by directly computing the composite hypervectors whose individual seed hypervectors do not need to be stored in memory. (2) Bundling a series of hypervectors over time requires a multibit counter per every hypervector component. We instead propose a binarized back-to-back bundling without requiring any counters. This truly enables on-chip learning with minimal resources as every hypervector component remains binary over the course of training to avoid otherwise multibit component. (3) For every classification event, an associative memory is in charge of finding the closest match between a set of learned hypervectors and a query hypervector by using a distance metric. This operator is proportional to [...]

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here