HCRF-Flow: Scene Flow from Point Clouds with Continuous High-order CRFs and Position-aware Flow Embedding

Scene flow in 3D point clouds plays an important role in understanding dynamic environments. Although significant advances have been made by deep neural networks, the performance is far from satisfactory as only per-point translational motion is considered, neglecting the constraints of the rigid motion in local regions. To address the issue, we propose to introduce the motion consistency to force the smoothness among neighboring points. In addition, constraints on the rigidity of the local transformation are also added by sharing unique rigid motion parameters for all points within each local region. To this end, a high-order CRFs based relation module (Con-HCRFs) is deployed to explore both point-wise smoothness and region-wise rigidity. To empower the CRFs to have a discriminative unary term, we also introduce a position-aware flow estimation module to be incorporated into the Con-HCRFs. Comprehensive experiments on FlyingThings3D and KITTI show that our proposed framework (HCRF-Flow) achieves state-of-the-art performance and significantly outperforms previous approaches substantially.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here