HeartBEAT: Heart Beat Estimation through Adaptive Tracking

19 Oct 2018  ·  Huijie Pan, Dogancan Temel, Ghassan AlRegib ·

In this paper, we propose an algorithm denoted as HeartBEAT that tracks heart rate from wrist-type photoplethysmography (PPG) signals and simultaneously recorded three-axis acceleration data. HeartBEAT contains three major parts: spectrum estimation of PPG signals and acceleration data, elimination of motion artifacts in PPG signals using recursive least Square (RLS) adaptive filters, and auxiliary heuristics. We tested HeartBEAT on the 22 datasets provided in the 2015 IEEE Signal Processing Cup. The first ten datasets were recorded from subjects performing forearm and upper-arm exercises, jumping, or pushing-up. The last twelve datasets were recorded from subjects running on tread mills. The experimental results were compared to the ground truth heart rate, which comes from simultaneously recorded electrocardiogram (ECG) signals. Compared to state-of-the-art algorithms, HeartBEAT not only produces comparable Pearson's correlation and mean absolute error, but also higher Spearman's rho and Kendall's tau.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here