Heterogeneous Objectives: State-of-the-Art and Future Research

26 Feb 2021  ·  Richard Allmendinger, Joshua Knowles ·

Multiobjective optimization problems with heterogeneous objectives are defined as those that possess significantly different types of objective function components (not just incommensurable in units or scale). For example, in a heterogeneous problem the objective function components may differ in formal computational complexity, practical evaluation effort (time, costs, or resources), determinism (stochastic vs deterministic), or some combination of all three. A particularly challenging variety of heterogeneity may occur by the combination of a time-consuming laboratory-based objective with other objectives that are evaluated using faster computer-based calculations. Perhaps more commonly, all objectives may be evaluated computationally, but some may require a lengthy simulation process while others are computed from a relatively simple closed-form calculation. In this chapter, we motivate the need for more work on the topic of heterogeneous objectives (with reference to real-world examples), expand on a basic taxonomy of heterogeneity types, and review the state of the art in tackling these problems. We give special attention to heterogeneity in evaluation time (latency) as this requires sophisticated approaches. We also present original experimental work on estimating the amount of heterogeneity in evaluation time expected in many-objective problems, given reasonable assumptions, and survey related research threads that could contribute to this area in future.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here