Jointly Modeling and Clustering Tensors in High Dimensions

15 Apr 2021  ·  Biao Cai, Jingfei Zhang, Will Wei Sun ·

We consider the problem of jointly modeling and clustering populations of tensors by introducing a high-dimensional tensor mixture model with heterogeneous covariances. To effectively tackle the high dimensionality of tensor objects, we employ plausible dimension reduction assumptions that exploit the intrinsic structures of tensors such as low-rankness in the mean and separability in the covariance. In estimation, we develop an efficient high-dimensional expectation-conditional-maximization (HECM) algorithm that breaks the intractable optimization in the M-step into a sequence of much simpler conditional optimization problems, each of which is convex, admits regularization and has closed-form updating formulas. Our theoretical analysis is challenged by both the non-convexity in the EM-type estimation and having access to only the solutions of conditional maximizations in the M-step, leading to the notion of dual non-convexity. We demonstrate that the proposed HECM algorithm, with an appropriate initialization, converges geometrically to a neighborhood that is within statistical precision of the true parameter. The efficacy of our proposed method is demonstrated through comparative numerical experiments and an application to a medical study, where our proposal achieves an improved clustering accuracy over existing benchmarking methods.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here