HI-CMLM: Improve CMLM with Hybrid Decoder Input

Mask-predict CMLM (Ghazvininejad et al.,2019) has achieved stunning performance among non-autoregressive NMT models, but we find that the mechanism of predicting all of the target words only depending on the hidden state of [MASK] is not effective and efficient in initial iterations of refinement, resulting in ungrammatical repetitions and slow convergence. In this work, we mitigate this problem by combining copied source with embeddings of [MASK] in decoder... Notably. it’s not a straightforward copying that is shown to be useless, but a novel heuristic hybrid strategy — fence-mask. Experimental results show that it gains consistent boosts on both WMT14 En<->De and WMT16 En<->Ro corpus by 0.5 BLEU on average, and 1 BLEU for less-informative short sentences. This reveals that incorporating additional information by proper strategies is beneficial to improve CMLM, particularly translation quality of short texts and speeding up early-stage convergence. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here