Hidden Technical Debt in Machine Learning Systems

Machine learning offers a fantastically powerful toolkit for building useful complexprediction systems quickly. This paper argues it is dangerous to think ofthese quick wins as coming for free. Using the software engineering frameworkof technical debt, we find it is common to incur massive ongoing maintenancecosts in real-world ML systems. We explore several ML-specific risk factors toaccount for in system design. These include boundary erosion, entanglement,hidden feedback loops, undeclared consumers, data dependencies, configurationissues, changes in the external world, and a variety of system-level anti-patterns.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here