Hierarchic Kernel Recursive Least-Squares

We present a new kernel-based algorithm for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel-based model into a deep hierarchical structure, such that the weights of a kernel model over each dimension are modeled over its adjacent dimension... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet