Hierarchical Adaptation with Hypernetworks for Few-shot Molecular Property Prediction

1 Oct 2023  ·  Shiguang Wu, Yaqing Wang, Quanming Yao ·

Molecular property prediction (MPP) is important in biomedical applications, which naturally suffers from a lack of labels, thus forming a few-shot learning problem. State-of-the-art approaches are usually based on gradient-based meta learning strategy, which ignore difference in model parameter and molecule's learning difficulty. To address above problems, we propose a novel hierarchical adaptation mechanism for few-shot MPP (HiMPP). The model follows a encoder-predictor framework. First, to make molecular representation property-adaptive, we selectively adapt encoder's parameter by designing a hypernetwork to modulate node embeddings during message propagation. Next, we make molecule-level adaptation by design another hypernetwork, which assigns larger propagating steps for harder molecules in predictor. In this way, molecular representation is transformed by HiMPP hierarchically from property-level to molecular level. Extensive results show that HiMPP obtains the state-of-the-art performance in few-shot MPP problems, and our proposed hierarchical adaptation mechanism is rational and effective.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods