Hierarchical Context enabled Recurrent Neural Network for Recommendation

26 Apr 2019  ·  Kyungwoo Song, Mingi Ji, Sungrae Park, Il-Chul Moon ·

A long user history inevitably reflects the transitions of personal interests over time. The analyses on the user history require the robust sequential model to anticipate the transitions and the decays of user interests. The user history is often modeled by various RNN structures, but the RNN structures in the recommendation system still suffer from the long-term dependency and the interest drifts. To resolve these challenges, we suggest HCRNN with three hierarchical contexts of the global, the local, and the temporary interests. This structure is designed to withhold the global long-term interest of users, to reflect the local sub-sequence interests, and to attend the temporary interests of each transition. Besides, we propose a hierarchical context-based gate structure to incorporate our \textit{interest drift assumption}. As we suggest a new RNN structure, we support HCRNN with a complementary \textit{bi-channel attention} structure to utilize hierarchical context. We experimented the suggested structure on the sequential recommendation tasks with CiteULike, MovieLens, and LastFM, and our model showed the best performances in the sequential recommendations.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here