Hierarchical Linearly-Solvable Markov Decision Problems

10 Mar 2016  ·  Anders Jonsson, Vicenç Gómez ·

We present a hierarchical reinforcement learning framework that formulates each task in the hierarchy as a special type of Markov decision process for which the Bellman equation is linear and has analytical solution. Problems of this type, called linearly-solvable MDPs (LMDPs) have interesting properties that can be exploited in a hierarchical setting, such as efficient learning of the optimal value function or task compositionality. The proposed hierarchical approach can also be seen as a novel alternative to solving LMDPs with large state spaces. We derive a hierarchical version of the so-called Z-learning algorithm that learns different tasks simultaneously and show empirically that it significantly outperforms the state-of-the-art learning methods in two classical hierarchical reinforcement learning domains: the taxi domain and an autonomous guided vehicle task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here