Hierarchical models for neural population dynamics in the presence of non-stationarity

12 Oct 2014  ·  Mijung Park, Jakob H. Macke ·

Neural population activity often exhibits rich variability and temporal structure. This variability is thought to arise from single-neuron stochasticity, neural dynamics on short time-scales, as well as from modulations of neural firing properties on long time-scales, often referred to as "non-stationarity". To better understand the nature of co-variability in neural circuits and their impact on cortical information processing, we need statistical models that are able to capture multiple sources of variability on different time-scales. Here, we introduce a hierarchical statistical model of neural population activity which models both neural population dynamics as well as inter-trial modulations in firing rates. In addition, we extend the model to allow us to capture non-stationarities in the population dynamics itself (i.e., correlations across neurons). We develop variational inference methods for learning model parameters, and demonstrate that the method can recover non-stationarities in both average firing rates and correlation structure. Applied to neural population recordings from anesthetized macaque primary visual cortex, our models provide a better account of the structure of neural firing than stationary dynamics models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here