Hierarchical Over-the-Air Federated Learning with Awareness of Interference and Data Heterogeneity

2 Jan 2024  ·  Seyed Mohammad Azimi-Abarghouyi, Viktoria Fodor ·

When implementing hierarchical federated learning over wireless networks, scalability assurance and the ability to handle both interference and device data heterogeneity are crucial. This work introduces a learning method designed to address these challenges, along with a scalable transmission scheme that efficiently uses a single wireless resource through over-the-air computation. To provide resistance against data heterogeneity, we employ gradient aggregations. Meanwhile, the impact of interference is minimized through optimized receiver normalizing factors. For this, we model a multi-cluster wireless network using stochastic geometry, and characterize the mean squared error of the aggregation estimations as a function of the network parameters. We show that despite the interference and the data heterogeneity, the proposed scheme achieves high learning accuracy and can significantly outperform the conventional hierarchical algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here