High-Bandwidth Spatial Equalization for mmWave Massive MU-MIMO with Processing-In-Memory

8 Sep 2020  ·  Oscar Castañeda, Sven Jacobsson, Giuseppe Durisi, Tom Goldstein, Christoph Studer ·

All-digital basestation (BS) architectures enable superior spectral efficiency compared to hybrid solutions in massive multi-user MIMO systems. However, supporting large bandwidths with all-digital architectures at mmWave frequencies is challenging as traditional baseband processing would result in excessively high power consumption and large silicon area. The recently-proposed concept of finite-alphabet equalization is able to address both of these issues by using equalization matrices that contain low-resolution entries to lower the power and complexity of high-throughput matrix-vector products in hardware. In this paper, we explore two different finite-alphabet equalization hardware implementations that tightly integrate the memory and processing elements: (i) a parallel array of multiply-accumulate (MAC) units and (ii) a bit-serial processing-in-memory (PIM) architecture. Our all-digital VLSI implementation results in 28nm CMOS show that the bit-serial PIM architecture reduces the area and power consumption up to a factor of 2x and 3x, respectively, when compared to a parallel MAC array that operates at the same throughput.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here