High-Level Concepts for Affective Understanding of Images

8 May 2017  ·  Afsheen Rafaqat Ali, Usman Shahid, Mohsen Ali, Jeffrey Ho ·

This paper aims to bridge the affective gap between image content and the emotional response of the viewer it elicits by using High-Level Concepts (HLCs). In contrast to previous work that relied solely on low-level features or used convolutional neural network (CNN) as a black-box, we use HLCs generated by pretrained CNNs in an explicit way to investigate the relations/associations between these HLCs and a (small) set of Ekman's emotional classes. As a proof-of-concept, we first propose a linear admixture model for modeling these relations, and the resulting computational framework allows us to determine the associations between each emotion class and certain HLCs (objects and places). This linear model is further extended to a nonlinear model using support vector regression (SVR) that aims to predict the viewer's emotional response using both low-level image features and HLCs extracted from images. These class-specific regressors are then assembled into a regressor ensemble that provide a flexible and effective predictor for predicting viewer's emotional responses from images. Experimental results have demonstrated that our results are comparable to existing methods, with a clear view of the association between HLCs and emotional classes that is ostensibly missing in most existing work.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here