High-Linearity PAM-4 Silicon Micro-ring Transmitter Architecture with Electronic-Photonic Hybrid DAC

14 Apr 2024  ·  Zheng Li, Chengyang Lv, Min Tan ·

This paper presents a high linearity PAM-4 transmitter (TX) architecture, consisting of a three-segment micro-ring modulator (MRM) and a matched CMOS driver. This architecture can drive a high-linearity 4-level pulse amplitude (PAM-4) modulation signal, thereby extending the tunable operating wavelength range for achieving linear PAM-4 output. We use the three-segment MRM to increase design flexibility so that the linearity of PAM-4 output can be optimized with another degree of freedom. Each phase shift region is directly driven by the independently amplitude-tunable Non-Return-to-Zero (NRZ) signal. The three-segment modulator can achieve an adjustable wavelength range of approximately 0.037 nm within the high linearity PAM-4 output limit when the driving voltage varies from 1.5 V to 3 V, simultaneously achieving an adjustable insertion loss (IL) range of approximately 2 dB, roughly four times that of the two-segment MRM with a similar design. The driver circuit with adjustable driving voltage is co-designed to adjust the eye height to improve PAM-4 linearity. In this article, the high linearity PAM-4 silicon micro-ring architecture can be employed in optical transmitters to adjust PAM-4 eye-opening size and maximize the PAM-4 output linearity, thus offering the potential for high-performance and low-power overhead transmitters.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here