Higher-order Relation Schema Induction using Tensor Factorization with Back-off and Aggregation

ACL 2018  ·  Madhav Nimishakavi, Partha Talukdar ·

Relation Schema Induction (RSI) is the problem of identifying type signatures of arguments of relations from unlabeled text. Most of the previous work in this area have focused only on binary RSI, i.e., inducing only the subject and object type signatures per relation. However, in practice, many relations are high-order, i.e., they have more than two arguments and inducing type signatures of all arguments is necessary. For example, in the sports domain, inducing a schema win(WinningPlayer, OpponentPlayer, Tournament, Location) is more informative than inducing just win(WinningPlayer, OpponentPlayer). We refer to this problem as Higher-order Relation Schema Induction (HRSI). In this paper, we propose Tensor Factorization with Back-off and Aggregation (TFBA), a novel framework for the HRSI problem. To the best of our knowledge, this is the first attempt at inducing higher-order relation schemata from unlabeled text. Using the experimental analysis on three real world datasets, we show how TFBA helps in dealing with sparsity and induce higher order schemata.

PDF Abstract ACL 2018 PDF ACL 2018 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here