HMCNAS: Neural Architecture Search using Hidden Markov Chains and Bayesian Optimization

31 Jul 2020Vasco LopesLuís A. Alexandre

Neural Architecture Search has achieved state-of-the-art performance in a variety of tasks, out-performing human-designed networks. However, many assumptions, that require human definition, related with the problems being solved or the models generated are still needed: final model architectures, number of layers to be sampled, forced operations, small search spaces, which ultimately contributes to having models with higher performances at the cost of inducing bias into the system... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet