How Can Optical Communications Shape the Future of Deep Space Communications? A Survey

7 Dec 2022  ·  Sarah Karmous, Nadia Adem, Mohammed Atiquzzaman, Sumudu Samarakoon ·

With a large number of deep space (DS) missions anticipated by the end of this decade, reliable and high capacity DS communications are needed more than ever. Nevertheless, existing technologies are far from meeting such a goal. Improving current systems does not only require engineering leadership, but also, very crucially, investigating potential technologies that overcome the unique challenges of ultra-long DS links. To the best of our knowledge, there has not been any comprehensive surveys of DS communications technologies over the last decade. Free space optical (FSO) is an emerging DS technology, proven to acquire lower communications systems size, weight and power (SWaP) and achieve a very high capacity compared to its counterpart radio frequency (RF), the currently used DS technology. In this survey, we discuss the pros and cons of deep space optical communications (DSOC) and review physical and networking characteristics. Furthermore, we provide, for the very first time, thoughtful discussions about implementing orbital angular momentum (OAM) and quantum communications (QC) for DS. We elaborate on how these technologies among other field advances, including interplanetary network, and RF/FSO systems improve reliability, capacity, and security. This paper provides a holistic survey in DSOC technologies gathering 200+ fragmented literature and including novel perspectives aiming to setting the stage for more developments in the field.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here