How Robust Are Energy-Based Models Trained With Equilibrium Propagation?

21 Jan 2024  ·  Siddharth Mansingh, Michal Kucer, Garrett Kenyon, Juston Moore, Michael Teti ·

Deep neural networks (DNNs) are easily fooled by adversarial perturbations that are imperceptible to humans. Adversarial training, a process where adversarial examples are added to the training set, is the current state-of-the-art defense against adversarial attacks, but it lowers the model's accuracy on clean inputs, is computationally expensive, and offers less robustness to natural noise. In contrast, energy-based models (EBMs), which were designed for efficient implementation in neuromorphic hardware and physical systems, incorporate feedback connections from each layer to the previous layer, yielding a recurrent, deep-attractor architecture which we hypothesize should make them naturally robust. Our work is the first to explore the robustness of EBMs to both natural corruptions and adversarial attacks, which we do using the CIFAR-10 and CIFAR-100 datasets. We demonstrate that EBMs are more robust than transformers and display comparable robustness to adversarially-trained DNNs on gradient-based (white-box) attacks, query-based (black-box) attacks, and natural perturbations without sacrificing clean accuracy, and without the need for adversarial training or additional training techniques.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here