Human Activity Learning and Segmentation using Partially Hidden Discriminative Models

6 Aug 2014 Truyen Tran Hung Bui Svetha Venkatesh

Learning and understanding the typical patterns in the daily activities and routines of people from low-level sensory data is an important problem in many application domains such as building smart environments, or providing intelligent assistance. Traditional approaches to this problem typically rely on supervised learning and generative models such as the hidden Markov models and its extensions... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet