Human Motion Transfer from Poses in the Wild

7 Apr 2020  ·  Jian Ren, Menglei Chai, Sergey Tulyakov, Chen Fang, Xiaohui Shen, Jianchao Yang ·

In this paper, we tackle the problem of human motion transfer, where we synthesize novel motion video for a target person that imitates the movement from a reference video. It is a video-to-video translation task in which the estimated poses are used to bridge two domains. Despite substantial progress on the topic, there exist several problems with the previous methods. First, there is a domain gap between training and testing pose sequences--the model is tested on poses it has not seen during training, such as difficult dancing moves. Furthermore, pose detection errors are inevitable, making the job of the generator harder. Finally, generating realistic pixels from sparse poses is challenging in a single step. To address these challenges, we introduce a novel pose-to-video translation framework for generating high-quality videos that are temporally coherent even for in-the-wild pose sequences unseen during training. We propose a pose augmentation method to minimize the training-test gap, a unified paired and unpaired learning strategy to improve the robustness to detection errors, and two-stage network architecture to achieve superior texture quality. To further boost research on the topic, we build two human motion datasets. Finally, we show the superiority of our approach over the state-of-the-art studies through extensive experiments and evaluations on different datasets.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here