Hutch++: Optimal Stochastic Trace Estimation

19 Oct 2020  ·  Raphael A. Meyer, Cameron Musco, Christopher Musco, David P. Woodruff ·

We study the problem of estimating the trace of a matrix $A$ that can only be accessed through matrix-vector multiplication. We introduce a new randomized algorithm, Hutch++, which computes a $(1 \pm \epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$ using just $O(1/\epsilon)$ matrix-vector products. This improves on the ubiquitous Hutchinson's estimator, which requires $O(1/\epsilon^2)$ matrix-vector products. Our approach is based on a simple technique for reducing the variance of Hutchinson's estimator using a low-rank approximation step, and is easy to implement and analyze. Moreover, we prove that, up to a logarithmic factor, the complexity of Hutch++ is optimal amongst all matrix-vector query algorithms, even when queries can be chosen adaptively. We show that it significantly outperforms Hutchinson's method in experiments. While our theory mainly requires $A$ to be positive semidefinite, we provide generalized guarantees for general square matrices, and show empirical gains in such applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here