Hybrid Semantics for Goal-Directed Natural Language Generation

ACL 2022  ·  Connor Baumler, Soumya Ray ·

We consider the problem of generating natural language given a communicative goal and a world description. We ask the question: is it possible to combine complementary meaning representations to scale a goal-directed NLG system without losing expressiveness? In particular, we consider using two meaning representations, one based on logical semantics and the other based on distributional semantics. We build upon an existing goal-directed generation system, S-STRUCT, which models sentence generation as planning in a Markov decision process. We develop a hybrid approach, which uses distributional semantics to quickly and imprecisely add the main elements of the sentence and then uses first-order logic based semantics to more slowly add the precise details. We find that our hybrid method allows S-STRUCT’s generation to scale significantly better in early phases of generation and that the hybrid can often generate sentences with the same quality as S-STRUCT in substantially less time. However, we also observe and give insight into cases where the imprecision in distributional semantics leads to generation that is not as good as using pure logical semantics.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here