Hybrid SRL with Optimization Modulo Theories
Generally speaking, the goal of constructive learning could be seen as, given an example set of structured objects, to generate novel objects with similar properties. From a statistical-relational learning (SRL) viewpoint, the task can be interpreted as a constraint satisfaction problem, i.e. the generated objects must obey a set of soft constraints, whose weights are estimated from the data. Traditional SRL approaches rely on (finite) First-Order Logic (FOL) as a description language, and on MAX-SAT solvers to perform inference. Alas, FOL is unsuited for con- structive problems where the objects contain a mixture of Boolean and numerical variables. It is in fact difficult to implement, e.g. linear arithmetic constraints within the language of FOL. In this paper we propose a novel class of hybrid SRL methods that rely on Satisfiability Modulo Theories, an alternative class of for- mal languages that allow to describe, and reason over, mixed Boolean-numerical objects and constraints. The resulting methods, which we call Learning Mod- ulo Theories, are formulated within the structured output SVM framework, and employ a weighted SMT solver as an optimization oracle to perform efficient in- ference and discriminative max margin weight learning. We also present a few examples of constructive learning applications enabled by our method.
PDF Abstract