i2LQR: Iterative LQR for Iterative Tasks in Dynamic Environments

28 Feb 2023  ·  Yifan Zeng, Suiyi He, Han Hoang Nguyen, Yihan Li, Zhongyu Li, Koushil Sreenath, Jun Zeng ·

This work introduces a novel control strategy called Iterative Linear Quadratic Regulator for Iterative Tasks (i2LQR), which aims to improve closed-loop performance with local trajectory optimization for iterative tasks in a dynamic environment. The proposed algorithm is reference-free and utilizes historical data from previous iterations to enhance the performance of the autonomous system. Unlike existing algorithms, the i2LQR computes the optimal solution in an iterative manner at each timestamp, rendering it well-suited for iterative tasks with changing constraints at different iterations. To evaluate the performance of the proposed algorithm, we conduct numerical simulations for an iterative task aimed at minimizing completion time. The results show that i2LQR achieves an optimized performance with respect to learning-based MPC (LMPC) as the benchmark in static environments, and outperforms LMPC in dynamic environments with both static and dynamics obstacles.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here