ICR: Iterative Convex Refinement for Sparse Signal Recovery Using Spike and Slab Priors

16 Feb 2015  ·  Hojjat S. Mousavi, Vishal Monga, Trac. D. Tran ·

In this letter, we address sparse signal recovery using spike and slab priors. In particular, we focus on a Bayesian framework where sparsity is enforced on reconstruction coefficients via probabilistic priors. The optimization resulting from spike and slab prior maximization is known to be a hard non-convex problem, and existing solutions involve simplifying assumptions and/or relaxations. We propose an approach called Iterative Convex Refinement (ICR) that aims to solve the aforementioned optimization problem directly allowing for greater generality in the sparse structure. Essentially, ICR solves a sequence of convex optimization problems such that sequence of solutions converges to a sub-optimal solution of the original hard optimization problem. We propose two versions of our algorithm: a.) an unconstrained version, and b.) with a non-negativity constraint on sparse coefficients, which may be required in some real-world problems. Experimental validation is performed on both synthetic data and for a real-world image recovery problem, which illustrates merits of ICR over state of the art alternatives.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here