Identification of Cancer -- Mesothelioma Disease Using Logistic Regression and Association Rule

11 Dec 2018  ·  Avishek Choudhury ·

Malignant Pleural Mesothelioma (MPM) or malignant mesothelioma (MM) is an atypical, aggressive tumor that matures into cancer in the pleura, a stratum of tissue bordering the lungs. Diagnosis of MPM is difficult and it accounts for about seventy-five percent of all mesothelioma diagnosed yearly in the United States of America... Being a fatal disease, early identification of MPM is crucial for patient survival. Our study implements logistic regression and develops association rules to identify early stage symptoms of MM. We retrieved medical reports generated by Dicle University and implemented logistic regression to measure the model accuracy. We conducted (a) logistic correlation, (b) Omnibus test and (c) Hosmer and Lemeshow test for model evaluation. Moreover, we also developed association rules by confidence, rule support, lift, condition support and deployability. Categorical logistic regression increases the training accuracy from 72.30% to 81.40% with a testing accuracy of 63.46%. The study also shows the top 5 symptoms that is mostly likely indicates the presence in MM. This study concludes that using predictive modeling can enhance primary presentation and diagnosis of MM. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.