Identification of Friction Models for MPC-based Control of a PowerCube Serial Robot

21 Mar 2022  ·  Jörg Fehr, Arnim Kargl, Hannes Eschmann ·

For model-based control, an accurate and in its complexity suitable representation of the real system is a decisive prerequisite for high and robust control quality. In a structured step-by-step procedure, a model predictive control (MPC) scheme for a Schunk PowerCube robot is derived. Neweul-M$^2$ provides the necessary nonlinear model in symbolical and numerical form. To handle the heavy online computational burden involved with the derived nonlinear model, a linear time-varying MPC scheme is developed based on linearizing the nonlinear system concerning the desired trajectory and the a priori known corresponding feed-forward controller. To improve the identification of the nonlinear friction models of the joints, a nonlinear regression method and the Sparse Identification of Nonlinear Dynamics (SINDy) are compared with each other concerning robustness, online adaptivity, and necessary preprocessing of the input data. Everything is implemented on a slim, low-cost control system with a standard laptop PC.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here