Identifying Exoplanets with Machine Learning Methods: A Preliminary Study

1 Apr 2022  ·  Yucheng Jin, Lanyi Yang, Chia-En Chiang ·

The discovery of habitable exoplanets has long been a heated topic in astronomy. Traditional methods for exoplanet identification include the wobble method, direct imaging, gravitational microlensing, etc., which not only require a considerable investment of manpower, time, and money, but also are limited by the performance of astronomical telescopes. In this study, we proposed the idea of using machine learning methods to identify exoplanets. We used the Kepler dataset collected by NASA from the Kepler Space Observatory to conduct supervised learning, which predicts the existence of exoplanet candidates as a three-categorical classification task, using decision tree, random forest, na\"ive Bayes, and neural network; we used another NASA dataset consisted of the confirmed exoplanets data to conduct unsupervised learning, which divides the confirmed exoplanets into different clusters, using k-means clustering. As a result, our models achieved accuracies of 99.06%, 92.11%, 88.50%, and 99.79%, respectively, in the supervised learning task and successfully obtained reasonable clusters in the unsupervised learning task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here