Identifying Influential Entries in a Matrix

14 Oct 2013Abhisek KunduSrinivas NambirajanPetros Drineas

For any matrix A in R^(m x n) of rank \rho, we present a probability distribution over the entries of A (the element-wise leverage scores of equation (2)) that reveals the most influential entries in the matrix. From a theoretical perspective, we prove that sampling at most s = O ((m + n) \rho^2 ln (m + n)) entries of the matrix (see eqn... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet