IM-Unpack: Training and Inference with Arbitrarily Low Precision Integers

12 Mar 2024  ·  Zhanpeng Zeng, Karthikeyan Sankaralingam, Vikas Singh ·

GEneral Matrix Multiply (GEMM) is a central operation in deep learning and corresponds to the largest chunk of the compute footprint. Therefore, improving its efficiency is an active topic of ongoing research. A popular strategy is the use of low bit-width integers to approximate the original entries in a matrix. This allows efficiency gains, but often requires sophisticated techniques to control the rounding error incurred. In this work, we first verify/check that when the low bit-width restriction is removed, for a variety of Transformer-based models, whether integers are sufficient for all GEMMs need -- for {\em both} training and inference stages, and can achieve parity with floating point counterparts. No sophisticated techniques are needed. We find that while a large majority of entries in matrices (encountered in such models) can be easily represented by {\em low} bit-width integers, the existence of a few heavy hitter entries make it difficult to achieve efficiency gains via the exclusive use of low bit-width GEMMs alone. To address this issue, we develop a simple algorithm, Integer Matrix Unpacking (IM-Unpack), to {\em unpack} a matrix with large integer entries into a larger matrix whose entries all lie within the representable range of arbitrarily low bit-width integers. This allows {\em equivalence} with the original GEMM, i.e., the exact result can be obtained using purely low bit-width integer GEMMs. This comes at the cost of additional operations -- we show that for many popular models, this overhead is quite small.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here