Im2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of View

CVPR 2018 Shuran SongAndy ZengAngel X. ChangManolis SavvaSilvio SavareseThomas Funkhouser

We present Im2Pano3D, a convolutional neural network that generates a dense prediction of 3D structure and a probability distribution of semantic labels for a full 360 panoramic view of an indoor scene when given only a partial observation ( <=50%) in the form of an RGB-D image. To make this possible, Im2Pano3D leverages strong contextual priors learned from large-scale synthetic and real-world indoor scenes... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet