Image Compression and Classification Using Qubits and Quantum Deep Learning

8 Oct 2021  ·  Ali Mohsen, Mo Tiwari ·

Recent work suggests that quantum machine learning techniques can be used for classical image classification by encoding the images in quantum states and using a quantum neural network for inference. However, such work has been restricted to very small input images, at most 4 x 4, that are unrealistic and cannot even be accurately labeled by humans... The primary difficulties in using larger input images is that hitherto-proposed encoding schemes necessitate more qubits than are physically realizable. We propose a framework to classify larger, realistic images using quantum systems. Our approach relies on a novel encoding mechanism that embeds images in quantum states while necessitating fewer qubits than prior work. Our framework is able to classify images that are larger than previously possible, up to 16 x 16 for the MNIST dataset on a personal laptop, and obtains accuracy comparable to classical neural networks with the same number of learnable parameters. We also propose a technique for further reducing the number of qubits needed to represent images that may result in an easier physical implementation at the expense of final performance. Our work enables quantum machine learning and classification on classical datasets of dimensions that were previously intractable by physically realizable quantum computers or classical simulation read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here