Image Deconvolution with Deep Image and Kernel Priors

18 Oct 2019  ·  Zhunxuan Wang, Zipei Wang, Qiqi Li, Hakan Bilen ·

Image deconvolution is the process of recovering convolutional degraded images, which is always a hard inverse problem because of its mathematically ill-posed property. On the success of the recently proposed deep image prior (DIP), we build an image deconvolution model with deep image and kernel priors (DIKP). DIP is a learning-free representation which uses neural net structures to express image prior information, and it showed great success in many energy-based models, e.g. denoising, super-resolution, inpainting. Instead, our DIKP model uses such priors in image deconvolution to model not only images but also kernels, combining the ideas of traditional learning-free deconvolution methods with neural nets. In this paper, we show that DIKP improve the performance of learning-free image deconvolution, and we experimentally demonstrate this on the standard benchmark of six standard test images in terms of PSNR and visual effects.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods