Image registration with sparse approximations in parametric dictionaries

28 Jan 2013  ·  Alhussein Fawzi, Pascal Frossard ·

We examine in this paper the problem of image registration from the new perspective where images are given by sparse approximations in parametric dictionaries of geometric functions. We propose a registration algorithm that looks for an estimate of the global transformation between sparse images by examining the set of relative geometrical transformations between the respective features. We propose a theoretical analysis of our registration algorithm and we derive performance guarantees based on two novel important properties of redundant dictionaries, namely the robust linear independence and the transformation inconsistency. We propose several illustrations and insights about the importance of these dictionary properties and show that common properties such as coherence or restricted isometry property fail to provide sufficient information in registration problems. We finally show with illustrative experiments on simple visual objects and handwritten digits images that our algorithm outperforms baseline competitor methods in terms of transformation-invariant distance computation and classification.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here