Implementing Non-Equilibrium Networks with Active Circuits of Duplex Catalysts

23 May 2020  ·  Antti Lankinen, Ismael Mullor Ruiz, Thomas E. Ouldridge ·

DNA strand displacement (DSD) reactions have been used to construct chemical reaction networks in which species act catalytically at the level of the overall stoichiometry of reactions. These effective catalytic reactions are typically realised through one or more of the following: many-stranded gate complexes to coordinate the catalysis, indirect interaction between the catalyst and its substrate, and the recovery of a distinct ``catalyst'' strand from the one that triggered the reaction. These facts make emulation of the out-of-equilibrium catalytic circuitry of living cells more difficult. Here, we propose a new framework for constructing catalytic DSD networks: Active Circuits of Duplex Catalysts (ACDC). ACDC components are all double-stranded complexes, with reactions occurring through 4-way strand exchange. Catalysts directly bind to their substrates, and and the ``identity'' strand of the catalyst recovered at the end of a reaction is the same molecule as the one that initiated it. We analyse the capability of the framework to implement catalytic circuits analogous to phosphorylation networks in living cells. We also propose two methods of systematically introducing mismatches within DNA strands to avoid leak reactions and introduce driving through net base pair formation. We then combine these results into a compiler to automate the process of designing DNA strands that realise any catalytic network allowed by our framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here